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I. INTRODUCTION

A continual-learning agent [1], which accumulates skills incrementally, benefits by improving its ability to predict the
consequences of its actions, learning environmental regularities even when external reward is rare or absent. A principled way
of motivating such agents is to use subjective compression progress [2] as an intrinsic reward for actions generating learnable
but as-yet-unknown regularities in the observation stream.

Here we study pure curiosity behavior with the aid of a simple environment that features initially unknown regularities
represented by a set of functions. At every time step the autonomous agent chooses which function to learn better, using a
predictor dedicated to that function. Intrinsic reward for any given function depends on the corresponding predictor’s progress.
Our experiments exhibit the agent’s developmental stages. Initially it learns to focus attention on an easily learnable constant
function, then on a harder-to-learn linear function, finally on a hard-to-learn nonlinear function. The results illustrate how
artificial curious systems can learn to deal with the unavoidable limitations of their predictor learning algorithms, by temporally
focusing computational resources on those parts of the world that make learning easy, given their previously learnt knowledge.

II. ARTIFICIAL CURIOSITY BASED ON COMPRESSION/PREDICTION PROGRESS

Basic Setup: The environment features a set of functions fi, i = 1 . . . N , initially unknown to the agent. Each fi maps an
observed feature vector x = (x1, ..., xm) to a discrete outcome y = fi(x). The developmental stages of the agent reflect the
acquisition of various environmental regularities represented by these functions. Multi-Layer Perceptrons (MLPs) are used as
predictors, and standard error back-propagation as the online learning method, with only one training iteration for each new
sample (xk, yk). Due to the stochastic nature of online learning, learning progress (see below) on the whole observation history
is not always positive. Hence the agent keeps training wi (the weight vector of MLP i) while maintaining w?

i as the current
best predictor for function fi.

To maximize cumulative learning progress, the agent uses an action-value function Q(i) to keep track of the estimated
progress of each function fi, like in the n−Armed Bandit problem [3]. It uses an ε-greedy policy for balancing exploration and
exploitation: with probability 1− ε it chooses to learn from function fi, where Q(i) ≥ Q(j),∀j; with probability ε it selects i
at random, uniformly. The Q-function is updated using the current curiosity reward ri: Q′(i)← (1− α)Q(i) + α[ri −Q(i)],
where the constant step size parameter 0 < α ≤ 1 is used to cope with the non-stationarity of learning progress [[3], §2.6], as
shown in Figure 1.

Curiosity Reward for Online Interactive Learning: In principle, the agent’s learning/compression progress is the number
of bits saved [2] when encoding the historical data hi(n) = {xk, yk}k=1:n, taking into account the description length of
the predictor wi [4]. If logistic sigmoid activation functions are used, the MLP outputs can be interpreted as conditional
probabilities of the possible observations [5]. Then the entropy error Ci(n) = −

∑n
k=1 logP (yk|xk;wi) can be viewed as the

number of extra bits needed to encode hi(n) using wi [4]. To encode wi, we assume quantized weights obeying the same
zero-mean Gaussian distribution with precision λ. The description length of wi becomes the weight decay regularizer [6];
the description length of both hi(n) and wi is ξ(hi(n),wi) = Ci(n) +

λ
2w

T
i wi. More sophisticated model-coding schemes

combined with efficient predictor learning algorithms exist but are beyond the scope of this paper.
At each discrete time step t the agent chooses a function fi to learn from according to the action policy on Q(i), then

proceeds as follows:
1. Observe xn, predict outcome yn using w?

i , and update history hi(n).
2. Compute ξ(hi(n),w?

i ). Train wi online, using sample (xn, yn) to get w
′

i. Compute ξ(hi(n),w
′

i).
3. Compute ri := ξ(hi(n),w

?
i )− ξ(hi(n),w

′

i). If ri < 0, set ri = 0 ; otherwise replace w?′

i := w
′

i. Finally compute Q′(i).

III. SIMULATIONS AND ANALYSIS

The agent may actively choose between four types of functions embedded in the environment: constant, linear, nonlinear,
and pseudo-random. Since they have distinctive learning complexity with respect to the MLP predictors used, they can serve
to illustrate the effectiveness of the framework (see Figure 1). Each observation-outcome sample is represented by a binary
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Fig. 1. Learning/compression progress vs. number of training samples for individual functions with different learning complexity. Only one training iteration
was used for each new sample. The learning progresses are clearly non-stationary.
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Fig. 2. Explorative behavior of the agent

vector x = (x1, x2) and a binary outcome y ∈ {0, 1}, with binary features x1, x2 randomly sampled from {0, 1}. We use
f1 : y = 1,∀x; f2 : y = x1; f3 : y = XOR(x1, x2); and f4 is based on the binary, pseudo-random generator of Matlab.

The MLP predictors have 2 input units, 5 hidden units, and 1 output unit; the learning rate η is 0.1, and λ is 1. For the
Q-function, α = 0.1, and Q0 = 0.

Figure 1 plots learning/compression progress of each function’s MLP predictor with respect to the number of training samples
for a typical run. For simple patterns defined by constant and linear functions, the predictors can learn quickly: progress is fast
in the beginning, then diminishes rapidly. For harder patterns like nonlinear XOR, the predictor needs more samples to start
making progress. Once learning gets going, however, the curiosity reward increases rapidly. For pseudo-random observations,
the predictor remains unable to learn much.

Figure 2 clearly exhibits the developmental stages of the learning agent. In the first 100 steps, after a bit of initial random
exploration, it achieves quick progress on the simplest constant patterns. Then it spends most of its time on learning the linear
function, from steps 100 to 1500. During this time, the XOR pattern also is tried out on occasion, due to the ε-greedy policy,
but for a long time XOR seems random to the agent, despite XOR’s deterministic regularity. After 1500 interactions, however,
the agent starts making progress on XOR, suddenly experiencing a Wow effect—a sudden increase in intrinsic reward and a
quick shift of attention to this pattern. The pseudo-random patterns always remain incompressible, never causing significant
intrinsic reward, and never becoming a long-term focus of learning.

IV. CONCLUSION

We studied the purely curious behavior of an autonomous agent trying to learn environmental regularities, using the minimum
description length principle to quantify its online learning/compression progress during interactive learning. After some initial
steps of random exploration, the agent shifts its attention towards data expected to become more predictable, hence more
compressible, through additional learning. Only observations with learnable but as-yet-unknown algorithmic regularities are
temporarily novel and interesting, while subjectively random, arbitrary or fully predictable data quickly becomes boring.
Ongoing work concentrates on automatically decomposing complex behaviors into meaningful sub-behaviors, and assigning
(more powerful) prediction modules to them.
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